asyan.org
добавить свой файл
1
Муниципальное образовательное учреждение

«Средняя общеобразовательная школа № 7 г. Соль – Илецка

Оренбургской области»
Муниципальное образовательное учреждение

дополнительного образования детей

«Центр детского творчества Соль – Илецкого района

Оренбургской области»

Из истории возникновения тригонометрических терминов

Работа ученицы 10а класса,

члена ДТО «Юный математик»

при Центре детского творчества

Соль – Илецкого района

Ивасюк Виктории.

Руководитель :

учитель математики школы № 7,

руководитель ДТО «Юный математик»

Кузнецова Надежда Васильевна.


г. Соль – Илецк

2008г.

Оглавление:



  1. О происхождении названий сторон прямоугольного треугольника____с.3




  1. Использование тригонометрических соотношений

для решения задач практики ________________с.6


  1. Происхождение тригонометрических терминов ________________с.7




  1. Развитие тригонометрии в Европе ______________с.11



5. Литература ______________с. 13

1. О происхождении названий сторон прямоугольного треугольника.
Начав изучать тригонометрию, мы обращаем внимание, что используемая в ней символика является необычной и сложной. Чтобы проиллюстрировать глубинную сущность понятий, обратимся к истории математики.

В данной работе попытаемся ответить на вопрос:

«Откуда появилась необходимость рассматривать соотношения сторон прямоугольного треугольника?» и «Как появилась тригонометрическая символика?»

Ключ к отгадке надо искать в практической деятельности людей, причем речь идет о временах очень далеких (второе тысячелетие до н.э., а может и ранее).

В древние времена строительство сооружений велось примерно таким образом и такими средст­вами, как и сегодня строят небольшие дома и под­собные помещения. При этом строители использу­ют нехитрые инструменты: веревку, отвес, колыш­ки и пр. Между прочим, в Древнем Египте сущест­вовали люди специальной профессии, которых на­зывали гарпедонапты, что значит, натягиватели веревки. С них начиналось любое строительство. А зачем нужна веревка строителям? Чтобы ровно в линию выкладывать кирпичи или камни.

Если посмотреть в этимологический словарь, то можно увидеть:

Линия. Через посредство немецкого языка заимствовано в начале 18 в. из латыни. Лат. linea – «нитка» - производное от linum – «лен»

Еще веревка нужна для того, чтобы получить прямой угол, например в целях строительства при­вычного нам четырехугольного дома. Ведь такой дом построить легче всего. А строительство домов иных форм и сейчас является трудной архитектур­ной задачей.

Издавна строители научились получать прямой угол с помощью веревки. В Древнем Египте заме­тили, что если на веревке завязать узелки на рав­ном расстоянии друг от друга, и натянуть веревку так, чтобы, говоря современным языком, получал­ся треугольник со сторонами 3, 4, 5, то угол, ле­жащий против наибольшей стороны, окажется пря­мым. С тех пор треугольник со сторонами 3, 4, 5 называется египетским.


В Древнем Египте измерения были священ­ным делом — уделом немногих образованных лю­дей — жрецов.

Историю с натягиванием веревки продолжают еще несколько древних терминов: катет — значит «отвес», гипотенуза — «натянутая», а другой катет прямоугольного треугольника не назывался кате­том (т.е. отвесом), о нем говорили как об основании.




По натянутой веревке (другими словами, по ги­потенузе) можно проводить стачивание боковой грани строящейся пирамиды.

Теперь мы подошли к главному вопросу: «Как объяснить строителям, по какому углу стачивать грань пирамиды?» (В Древнем Египте пирамиду выкладывали из грубых крупных камней, и надо было ее отшлифовать или иным образом подкорректировать.) Один из способов: задать отношение высоты пирамиды к апофеме, или, если говорить о плоскости, задать отношение катета-отвеса к ги­потенузе. Вот и получается прообраз косинуса угла стачивания. А когда задавались другие от­ношения - отношение катета-основания к катету-отвесу или отношение катета-основания к гипоте­нузе — это были прообразы понятий тангенса и синуса угла.



В самом деле, задавать указанные отношения сторон прямоугольного треугольника очень удоб­но. Так, если на макете пирамиды (рис) опре­делить отношение высоты пирамиды к ее апофеме как 2:3, то и для самой пирамиды (рис. б) это отношение сохранится, ведь большая пирамида есть подобие маленькой (макета пирамиды).



Теперь мы понимаем: рассматривать отношения длин сторон прямоугольного треугольника очень удобно, так как для всех подобных прямоугольных треугольников эти отношения сохраняются.

Судя по всему, на идею подобных фигур люди обратили внимание достаточно давно. Одинаковые по форме, но различные по величине фигуры встре­чаются в вавилонских и египетских памятниках. В сохранившейся погребальной камере отца фараона Рамсеса II имеется стена, покрытая сетью квадра­тиков, с помощью которой на стену перенесены в увеличенном виде рисунки меньших размеров (сво­его рода «палетка»).




  1. Использование тригонометрических соотношений

для решения задач практики

В дальнейшем геометрические знания накапли­вались, а тригонометрические соотношения в пря­моугольных треугольниках стали все чаще исполь­зоваться для решения таких задач практики, как нахождение расстояний до недоступных объектов. Приведем несколько примеров.
Легенда гласит, что Фалес (философ и матема­тик, имя которого уже известно учащимся) привел в изумление египетского царя Амазиса, измерив высоту одной из пирамид по величине отбрасыва­емой ею тени. Догадка Фалеса заключалась в том, что в течение дня бывает момент, когда длина тени каждого предмета равна высоте самого этого пред­мета. Он дождался момента, когда длина его тени стала равна его росту, и тогда, измерив тень пира­миды, вычислил ее высоту.
Сформулируем другую не менее известную задачу:

Задача. Определить расстояние от корабля, находящегося в море, до берега.


Решение. Пусть корабль находится в точке К, а наблюдатель — в точке А . Построим прямой угол с вершиной в точке А, откладыва­ем на берегу отрезок АС и делим его пополам точкой В. Затем из точки С передвигаемся по прямой т, перпендикулярной ВС, до тех пор, пока не дойдем до точки D, из которой точки К и В видны лежащими на одной прямой. Отме­тим полученную точку как D. Прямоугольные треугольники ВСD и ВАК рав­ны, следовательно. АК=СD. а длину отрезка СD можно непосредственно измерить.

Решение задач о нахождении расстояний до не­доступных объектов, а также задач на вычисление недоступных высот было одним из источников развития тригонометрического знания.


3. Происхождение тригонометрических терминов

До сих пор мы рассматривали самую глубинную предысторию зарождения тригонометрического знания, но именно она отразилась в самом слове «тригонометрия», которое буквально означает «из­мерение треугольника». Действительно, термин тригонометрия состоит из двух греческих слов: тригоном, что означает «треугольник» и метрейн, что означает «измерять».

Итак, тригонометрия, как и всякая наука, выра­стала из потребностей человеческой практики, но эти потребности не ограничивались, как мы упо­минали выше, только лишь потребностями строи­тельства или нахождения расстояний до недоступ­ных объектов. Задачи мореплавания, требовавшие по звездам определять правильный курс корабля, задачи определения по звездам пути при движении караванов в пустыне, задачи земледелия, требовав­шие введения точного календаря, и многие другие обусловили развитие астрономии, а с ней и триго­нометрии. Причем сферическая тригонометрия развивалась наряду с плоской.

По сути, тригонометрия появилась в древности как один из разделов астрономии. Дело в том, что преобладающей гипотезой о строении Вселенной была геоцентрическая, согласно которой Земля есть шар, расположенный в центре небесной сферы, ко­торая равномерно вращается вокруг своей оси. Светила считаются расположенными на этой сфе­ре. При изучении их движения большое значение приобретают задачи о расположении точек и фигур на сфере. Работы, в которых подобные задачи ре­шаются, получили название сферики. Плоская три­гонометрия при таких условиях отнюдь не играла лишь второстепенную роль по сравнению со сфе­рической тригонометрией. У нее была своя область приложений: помимо решения задач на определе­ние расстояний до недоступных объектов, она яв­лялась частью практической астрономии — фигуры на сфере проектировались на плоскость горизонта, меридиана и т.д., и таким образом многие задачи сводились к плоским случаям.

Отдельные вопросы из тригонометрии уже ус­пешно решали древнегреческие астрономы, одна­ко они рассматривали хорды, а не синусы, косину­сы и другие, как говорили в древности, линии. Если говорить точнее, то греческие астрономы рассмат­ривали по сути только синус, вместо которого ис­пользовали хорду, равную удвоенной линии синуса половинной дуги.

Метод составления тригонометрических таблиц состоял в следующем. В основе всех построений астрономов древности находится круг заданного диаметра. На нем рассматривалась единственная тригонометрическая характеристика: длина хорды, стягивающей дугу, соответствующую данному центральному углу.

Задача состояла в со­ставлении таблицы значений этой функции с наи­большей, по возможности, точностью и высокой частотой в последовательности значений аргумен­та. По существу таблицы хорд являются таблицами синусов.

Первые тригонометрические таблицы (таблицы хорд), которые положили начало вычислительной тригонометрии, составил еще во II в. до н.э. древ­негреческий астроном Гиппарх. Венцом же разви­тия астрономии и тригонометрии в Древней Греции можно считать работу «Большое математичес­кое построение астрономии в 13 книгах» («Альма­гест») знаменитого астронома Клавдия Птолемея (II в. н.э.). Сведения по прямолинейной и сфери­ческой тригонометрии изложены в первой книге «Альмагеста». Показывая, как вычислять хорды, Птолемей делил окружность на 360 частей (граду­сов). Он составил такую таблицу синусов (хорд), которая много веков была единственным пособи­ем при решении задач о треугольниках.

Начало учению о тригонометрических величинах было положено в Индии, начиная с IV—VI вв. Ин­дийские ученые впервые в науке стали употреблять линию синуса как половину хорды, и составили первые тригонометрические таблицы синусов (по­лухорд). Им были известны также основное триго­нометрическое тождество, формулы приведения, формула синуса половинного угла.

Заметим, что греческое слово хорде, от которого происходит наш термин «хорда», буквально озна­чает «тетива лука», «струна». Индийские ученые впервые предложили рассматривать величину по­лухорды (синуса), которую называли архаджива, что буквально означает «половина тетивы лука», но потом стали называть джива, что значит «тетива лука».

Как по примеру индийских математиков не уви­деть на рис. лук с натянутой стрелой?




Арабские математики, которые позже (начиная с VIII в.) осваивали накопленные математичес­кие знания, писали слово джива в арабской транскрипции как джиба, что созвучно арабско­му слову джайб, которое дословно означает «па­зуха».

Вместе с военными завоеваниями арабов слово «пазуха» для обозначения полухорды в тригоно­метрии попало в Европу (X—XII вв.), где евро­пейские ученые перевели его на латынь как «си­нус». Поскольку латинский язык считался обще­признанным научным языком в Европе, то тер­мин «синус» нашел там широкое распространение и сохранился до настоящего времени. Кста­ти, этот термин применяется не только в мате­матике: сейчас в медицине заболевание пазух носа называют синуситом.

Интересно заметить, что европейские математики XII—XVI вв. часто называли синус sinus гесtus (пря­мой синус), а радиус тригонометрической окружнос­ти sinus, т.е. весь (полный) синус.

Слово «косинус» — это сокращение латинского выра­жения complementy sinus, т.е. «дополнительный синус» или, иначе, «синус дополнительной дуги»; вспомни­те: cosα = sin (90° — а).

В IХ-Х вв. центр математических исследований, значит, и центр развития тригонометрического зна­ния, переместился в Среднюю Азию, где трудами арабских математиков тригонометрия впервые вы­делилась из астрономии как самостоятельная на­ука. В частности, ученые стран ислама ввели новые тригонометрические величины: тангенс и котангенс. В трактате «Плоские четырехсторонники» ученого-энциклопедиста и государственного деятеля XIII в. Насирэддина Туей плоская и сферическая тригоно­метрия выступают как самостоятельные предметы. Для сравнения, в Европе тригонометрия достигла этого уровня, стала успешно развиваться и тракто­ваться как самостоятельная наука лишь в XV в., и начало этому было положено трудами немецкого ас­тронома и математика, профессора Региомонтана.

Понятия «тангенс» и «котангенс», как и первые таблицы этих новых тригонометрических величин, родились не из рассмотрения тригонометрической окружности, а из учения о солнечных часах — гномоники. Солнечные часы первоначально представ­ляли собой шест, вертикально воткнутый в землю (греческое слово гномон — название этого шеста — означает «распознаватель»). Время отсчитывалось по длине и направлению тени, отбрасываемой ше­стом.


Один из современников ал-Хорезми (IX в.)1 математик и астроном Ахмед

ал-Мазави, названный «Вычислитель» (ал-Хабаш, ал-Хасиб), занимаясь гномоникой, констатировал, что отношение дли­ны тени и к постоянной длине l гномона солнеч­ных часов меняется в зависимости от высоты Солн­ца, измеряемой углом φ. Он принял l за 1 и со­ставил таблицу значений теней (и), соответствую­щих значениям углов φ = 1°, 2°, 3°, ..., т.е. (в со­временной символике) и = lсtgφ, или (если учесть, что l = 1) и = tgφ. Эта таблица дала возможность определять высоту Солнца по длине тени. Отно­шение длины тени к длине шеста определяет высо­ту солнца над горизонтом.



Для случая горизонтального гномона, перпенди­кулярного к вертикальной стене, ал-Хабаш составил таблицу обращенных теней: и' = l tgφ, или и' = tgφ.




Живший в конце X в. в Багдаде Абу-ль-Вафа в сво­ей «Совершенной книге» — своем «Альмагесте»2 — вводил тригонометрические линии не через пря­моугольный треугольник, а с помощью окружнос­ти, определяя, например, тангенс как отрезок ка­сательной к окружности. В некоторых местах Абу-ль-Вафа принимал радиус окружности за единицу.

Начиная с XIV—XV вв. центр математических исследований перемещается в Европу. В XIII— XIV вв, при переводе арабских произведений на ла­тинский язык новые тригонометрические функции котангенс и тангенс были названы umbra rectaпрямая тень, и итbra versa - обратная тень. Изве­стно, что линию тангенсов уже использовал в сво­их работах английский математик Томас Брадвардин (1290-1349).

Термин tangens (от лат. касающийся [отрезок ка­сательной]) был введен только в 1583 г. датским математиком Томасом Финком в связи с ролью этой линии на тригонометрической окружности. Термин «котангенс» образован по аналогии с тер­мином «косинус», и встречается впервые в 1620 г. у английского ученого Эдмунта Гутера.
4. Развитие тригонометрии в Европе

В Европе первое сочинение, в котором тригономе­трия рассматривалась как самостоятельная математическая дисциплина, написал в 1462-1464 гг. немец­кий математик и астроном Региомонтан. Он называл свой труд «Пять книг о треугольниках всех видов». В это время тригонометрия по-прежнему продолжала формироваться и развиваться под определяющим влиянием астрономии. В XV—XVI вв. усовершенст­вовались таблицы тригонометрических функций, которые были необходимы астрономам, разрабаты­вались все новые вычислительные приемы, рассма­тривались все более сложные задачи решения плос­ких и сферических треугольников, оттачивалась тех­ника работы с тригонометрическими линиями.
В XVI в. французский математик Франсуа Виет (1540—1603) использовал тригонометрию для ре­шения кубического уравнения. В некоторых его результатах устанавливалась связь между тригоно­метрией и алгеброй. Кроме того, он положил на­чало буквенным обозначениям в тригонометрии. Таким образом, на пороге XVII в. в развитии три­гонометрии наметилось новое направление — ана­литическое. Если до этого главной целью триго­нометрии считалось решение треугольников, вы­числение элементов геометрических фигур, а уче­ние о тригонометрических функциях строилось на геометрической основе, то развитие нового (ана­литического) направления привело к тому, что тригонометрия постепенно стала одной из глав математического анализа.

Начало этого преобра­жения тригонометрии связано с именем знамени­того ученого много лет работавшего в Петербурге Леонарда Эйлера (1707—1783).




Эйлер усовершен­ствовал как символику, так и содержание триго­нометрии. Перечислим некоторые его нововведе­ния в этой области.

1. До Эйлера совсем редко рассматривались три­гонометрические функции дуг, превышающих π. Лишь в его трудах разрабатывается учение о триго­нометрических функциях любого аргумента и впер­вые ясно изложен вопрос о знаках тригонометри­ческих функций в каждом квадранте.

2. В отличие от своих предшественников Эйлер исключил из своих формул Rцелый синус (sinus totus), принимая R = 1 и упрощая таким образом записи и вычисления.

3. Понимая аргумент тригонометрической функ­ции не только как угол или дугу, а как любую чис­ловую величину, Эйлер впервые стал систематиче­ски излагать тригонометрию аналитическим путем. До него каждая тригонометрическая теорема дока­зывалась отдельно на основании соответствующе­го каждому случаю геометрического чертежа. Эй­лер же выводил теоремы, исходя из небольшого числа основных соотношений.

4. Для обозначения тригонометрических функ­ций Эйлер использовал символы sin х, соs x, tang x, соt х и т.д., а также ввел употребляемые поныне обозначения а, Ь, с для сторон и А, В, С для соответствующих противоположных углов треуголь­ника АВС, что способствовало появлению единой символики в тригонометрии.

5. Эйлер стал рассматривать тригонометрию как науку о тригонометрических функциях и придал ей современный вид.

В наше время тригонометрия больше не рассма­тривается как самостоятельная ветвь математики. Важнейшая ее часть — учение о тригонометричес­ких функциях — является частью более общего, по­строенного с единой точки зрения учения о функ­циях, изучаемых в математическом анализе. Другая же часть — решение треугольников — рассматрива­ется как глава геометрии (плоской и сферической.).

Литература
1. Глейзер Г.И. История математики в школе: VII-VIII кл. - М.: Просвещение, 1982.

2. Глейзер Г.И. История математики в школе: IX-X кл. — М.: Просвещение, 1983.

3. Рыбников К.А. История математики: Учебник. — М.: Изд-во МГУ, 1994.

4. Чистяков В.Д. Старинные задачи по элементарной математике. — Минск: Вышэйшая школа, 1978.

5. http://www.krugosvet.ru/