asyan.org
добавить свой файл
  1 2 3 4 5
^

Дроблення проміжку.



При обчисленні інтегралу можно зроботи так. Розібємо спочатку проміжок на деяке число, , рівних проміжків
,
в звязку з чим, шуканий інтеграл постане у вигляді суми
(9)
Тепер же до кожного із цих проміжків застосуємо параболічне інтерполювання, тобто станемо обчислювати інтеграли (9) по одній із наближених формул – (4), (6), (8).

Легко збагнути, що виходячи із формул (4) або (6), ми таким шляхом знов отримаємо вже відомі нам формули прямокутників і трапецій, (1) и (2).

Застосуємо тепер до інтегралів (9) формулу (8), при цьому для стислості положимо, як і вище,
, , .
Ми отримаємо
,
,
. . . . . . . . . . . . . . . . . . . . . . . . . .
.
Зрештою, додаючи почленно ці равенства, прийдемо до формули
(10)
Вона носит назву формули Сімпсона (Th. Simpson); цією формулою користуються для наближенного обчислення інтегралів частіші, аніж формулами прямокутников і трапецій, бо она – при тих же затратах – дає зазвичай більш точний результат.

^

Залишковий член формули прямокутників.




Почнемо з формули (4). Припустимо, що у проміжку функція має неперервні похідні перших двох порядків. Тогді, розкладая (по формулі Тейлора) за степенями двочлена аж до його квадрату, будемо мати для всіх значень в
,


де міститься між та і залежить від .

Якщо проінтегрувати цю рівність у проміжку від до , то другий член зправа зникне, бо
(11)
Таким чином, отримаємо
,

так, що залишковий член формули (4), який поновлює її точність має вигляд
.
Позначив через і , відповідно найменьше та найбільше значення неперервної функції у проміжку і коростуючись тим, що другий множник підінтегрального виразу на змінює знака, за узагальненою теоремою про середне можемо написати
,

де міститься між точками и . По відомій властивості неперервної функції, знайдеться в така точка , що , і остаточно
. (12)
Якщо зараз розділити проміжок на рівних частин, то для кожного часткового проміжку будемо мати точную формулу


.
Додавнши ці равенства (при ) почленно отримаємо при звичайних скорочених позначеннях
,

де вираз


і є залишковий член формули прямокутників (1). Так як вираз



також знаходиться між і , то і він представляє одне із значень функції .

Тому остаточно маємо
(13).
При зростанні цей додатковий член спадає приблизно як .1




<< предыдущая страница   следующая страница >>